The distance from a matrix polynomial to matrix polynomials with a prescribed multiple eigenvalue
نویسندگان
چکیده
For a matrix polynomial P (λ) and a given complex number μ, we introduce a (spectral norm) distance from P (λ) to the matrix polynomials that have μ as an eigenvalue of geometric multiplicity at least κ, and a distance from P (λ) to the matrix polynomials that have μ as a multiple eigenvalue. Then we compute the first distance and obtain bounds for the second one, constructing associated perturbations of P (λ).
منابع مشابه
Computational aspect to the nearest southeast submatrix that makes multiple a prescribed eigenvalue
Given four complex matrices $A$, $B$, $C$ and $D$ where $Ainmathbb{C}^{ntimes n}$ and $Dinmathbb{C}^{mtimes m}$ and let the matrix $left(begin{array}{cc} A & B C & D end{array} right)$ be a normal matrix and assume that $lambda$ is a given complex number that is not eigenvalue of matrix $A$. We present a method to calculate the distance norm (with respect to 2-norm) from $D$ to ...
متن کاملOn the distance from a weakly normal matrix polynomial to matrix polynomials with a prescribed multiple eigenvalue
متن کامل
On the distance from a matrix polynomial to matrix polynomials with two prescribed eigenvalues
Consider an n × <span style="fon...
متن کاملOn condition numbers of polynomial eigenvalue problems with nonsingular leading coefficients
In this paper, we investigate condition numbers of eigenvalue problems of matrix polynomials with nonsingular leading coefficients, generalizing classical results of matrix perturbation theory. We provide a relation between the condition numbers of eigenvalues and the pseudospectral growth rate. We obtain that if a simple eigenvalue of a matrix polynomial is ill-conditioned in some respects, th...
متن کاملAlgebraic adjoint of the polynomials-polynomial matrix multiplication
This paper deals with a result concerning the algebraic dual of the linear mapping defined by the multiplication of polynomial vectors by a given polynomial matrix over a commutative field
متن کامل