The distance from a matrix polynomial to matrix polynomials with a prescribed multiple eigenvalue

نویسندگان

  • Nikolaos Papathanasiou
  • Panayiotis Psarrakos
چکیده

For a matrix polynomial P (λ) and a given complex number μ, we introduce a (spectral norm) distance from P (λ) to the matrix polynomials that have μ as an eigenvalue of geometric multiplicity at least κ, and a distance from P (λ) to the matrix polynomials that have μ as a multiple eigenvalue. Then we compute the first distance and obtain bounds for the second one, constructing associated perturbations of P (λ).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational aspect to the nearest southeast submatrix that makes multiple a prescribed eigenvalue

Given four complex matrices $A$‎, ‎$B$‎, ‎$C$ and $D$ where $Ainmathbb{C}^{ntimes n}$‎ ‎and $Dinmathbb{C}^{mtimes m}$ and let the matrix $left(begin{array}{cc}‎ A & B ‎ C & D‎ end{array} right)$ be a normal matrix and‎ assume that $lambda$ is a given complex number‎ ‎that is not eigenvalue of matrix $A$‎. ‎We present a method to calculate the distance norm (with respect to 2-norm) from $D$‎ to ...

متن کامل

On condition numbers of polynomial eigenvalue problems with nonsingular leading coefficients

In this paper, we investigate condition numbers of eigenvalue problems of matrix polynomials with nonsingular leading coefficients, generalizing classical results of matrix perturbation theory. We provide a relation between the condition numbers of eigenvalues and the pseudospectral growth rate. We obtain that if a simple eigenvalue of a matrix polynomial is ill-conditioned in some respects, th...

متن کامل

Algebraic adjoint of the polynomials-polynomial matrix multiplication

This paper deals with a result concerning the algebraic dual of the linear mapping defined by the multiplication of polynomial vectors by a given polynomial matrix over a commutative field

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008